309 research outputs found

    The Birth of the Idea of Perfectibility: From the Enlightenment to Transhumanism

    Get PDF
    Starting from the Age of Enlightenment, a person’s ability of self-improvement, or perfectibility, is usually seen as a fundamental human feature. However, this term, introduced into the philosophical vocabulary by J.-J. Rousseau, gradually acquired additional meaning – largely due to the works of N. de Condorcet, T. Malthus and C. Darwin. Owing to perfectibility, human beings are not only able to work on themselves: by improving their abilities, they are also able to change their environment (both social and natural) and create favorable conditions for their existence. It is no coincidence that perfectibility became the key concept of the idea of social progress proposed by French thinkers in the Age of Enlightenment, despite the fact that later it was criticized, above all, by English authors, who justified its organic and biological nature and gave a different evolutionary interpretation to this concept, without excluding perfectibility from the philosophical vocabulary. In this article, we address the opposition and mutual counterarguments of these two positions. Beyond that, we draw a parallel with some of the ideas of S. Kapitsa, who proved to be not only a critic of Malthusianism but also a direct disciple of Condorcet. In the modern age, the ideas of human self-improvement caused the development of transhumanist movement. Condorcet is more relevant than ever, and today his theory of the progress of the human mind, which influenced the genesis of modern historical science, needs a re-thinking in the newest perspective of improving the mental and physical human nature with the help of modern technologies

    Wetting, roughness and hydrodynamic slip

    Full text link
    The hydrodynamic slippage at a solid-liquid interface is currently at the center of our understanding of fluid mechanics. For hundreds of years this science has relied upon no-slip boundary conditions at the solid-liquid interface that has been applied successfully to model many macroscopic experiments, and the state of this interface has played a minor role in determining the flow. However, the problem is not that simple and has been revisited recently. Due to the change in the properties of the interface, such as wettability and roughness, this classical boundary condition could be violated, leading to a hydrodynamic slip. In this chapter, we review recent advances in the understanding and expectations for the hydrodynamic boundary conditions in different situations, by focussing mostly on key papers from past decade. We highlight mostly the impact of hydrophobicity, roughness, and especially their combination on the flow properties. In particular, we show that hydrophobic slippage can be dramatically affected by the presence of roughness, by inducing novel hydrodynamic phenomena, such as giant interfacial slip, superfluidity, mixing, and low hydrodynamic drag. Promising directions for further research are also discussed.Comment: 36 pages, 19 figures. This chapter would be a part of "Nanoscale liquid interfaces" boo

    Wetting, roughness and flow boundary conditions

    Full text link
    We discuss how the wettability and roughness of a solid impacts its hydrodynamic properties. We see in particular that hydrophobic slippage can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel hydrodynamic properties, such as giant interfacial slip, superfluidity, mixing, and low hydrodynamic drag, that could not be achieved without roughness.Comment: 28 pages, 14 figures, 4 tables; accepted for publication in Journal of Physics: Condensed Matte

    Hydrodynamic interaction with super-hydrophobic surfaces

    Full text link
    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to reduce hydrodynamic drag. Based on lubrication theory, we analyze an approach of a hydrophilic disk to such a surface. The drag force is predicted analytically and formulated in terms of a correction function to the Reynolds equation, which is shown to be the harmonic mean of corrections expressed through effective slip lengths in the two principal (fastest and slowest) orthogonal directions. The reduction of drag is especially pronounced for a thin (compared to texture period) gap. It is not really sensitive to the pattern geometry, but depends strongly on the fraction of the gas phase and local slip length at the gas area.Comment: 20 pages, 7 figure

    Effective slip in pressure-driven flow past super-hydrophobic stripes

    Full text link
    Super-hydrophobic array of grooves containing trapped gas (stripes), have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused on idealized cases of stick-perfect slip stripes, with limited guidance. Here, we analyze the experimentally relevant situation of a pressure-driven flow past striped slip-stick surfaces with arbitrary local slip at the gas sectors. We derive analytical formulas for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that can be used for any surface slip fraction (validated by numerical calculations). By representing eigenvalues of the slip length-tensor, they allow us to obtain the effective slip for any orientation of stripes with respect to the mean flow. Our results imply that flow past stripes is controlled by the ratio of the local slip length to texture size. In case of a large (compared to the texture period) slip at the gas areas, surface anisotropy leads to a tensorial effective slip, by attaining the values predicted earlier for a perfect local slip. Both effective slip lengths and anisotropy of the flow decrease when local slip becomes of the order of texture period. In the case of small slip, we predict simple surface-averaged, isotropic flows (independent of orientation). These results provide a framework for the rational design of super-hydrophobic surfaces and devices.Comment: 10 pages, 4 figures, revised versio

    Disjoining Pressure of an Electrolyte Film Confined between Semipermeable Membranes

    Full text link
    We consider an electrolyte solution confined by semipermeable membranes in contact with a salt-free solvent. Membranes are uncharged, but since small counter-ions leak-out into infinite salt-free reservoirs, we observe a distance-dependent membrane potential, which generates a repulsive electrostatic disjoining pressure. We obtain the distribution of the potential and of ions, and derive explicit formulas for the disjoining pressure, which are validated by computer simulations. We predict a strong short-range power-law repulsion, and a weaker long-range exponential decay. Our results also demonstrate that an interaction between membranes does strongly depend on the screening lengths, valency of an electrolyte solution, and an inter-membrane film thickness. Finally, our analysis can be directly extended to the study of more complex situations and some biological problems.Comment: 9 pages, 8 figure

    Surface Roughness and Hydrodynamic Boundary Conditions

    Get PDF
    We report results of investigations of a high-speed drainage of thin aqueous films squeezed between randomly nanorough surfaces. A significant decrease in hydrodynamic resistance force as compared with predicted by Taylor's equation is observed. However, this reduction in force does not represents the slippage. The measured force is exactly the same as that between equivalent smooth surfaces obeying no-slip boundary conditions, but located at the intermediate position between peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to be independent on the separation and/or shear rate. Our results disagree with previous literature data reporting very large and shear-dependent boundary slip for similar systems.Comment: Revised versio

    Electrophoresis of Janus Particles: a Molecular Dynamics simulation study

    Full text link
    In this work, we use Molecular Dynamics and Lattice-Boltzmann simulations to study the properties of charged Janus particles in an electric field. We show that for relatively small net charge and thick electrostatic diffuse layer mobilities of Janus particles and uniformly charged colloids of the same net charge are identical. However, for higher charges and thinner diffuse layers Janus particles always show lower electrophoretic mobility. We also demonstrate that Janus particles align with the electric field and the angular deviation from the field's direction are related to their dipole moment. We show that the latter is affected by the thickness of the electrostatic diffuse layer and strongly correlates with the electrophoretic mobility.Comment: Accepted to JC

    Quantifying Confidence in DFT Predicted Surface Pourbaix Diagrams of Transition Metal Electrode-Electrolyte Interfaces

    Full text link
    Density Functional Theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the BEEF-vdW exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the Oxygen Reduction Reaction (ORR). We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH∗^* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O∗^*, and find the trend Ru>Rh>Ir>Pt>Pd for (111) metal facets, where Ru binds OH∗^* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating c-values to quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric using which certain experimentally observed surface phases and peak assignments can be better rationalized.Comment: 21 pages, 8 figures and Supporting Informatio
    • …
    corecore